Инструкция к калькулятору для расчёта купольной крыши и купольного дома. Расчет и конструирование элементов сферического покрытия Калькулятор купольный дом рассчитать площадь

Данная страница — инструкция к калькулятору для расчёта купольных конструкций, в том числе купольных крыш и купольных домов.

По умолчанию выставлен русский язык интерфейса. Вы его можете сменить на удобный для Вас, выбрав нужный в выпадающем списке «Язык».

Инструкция к калькулятору

Область «Исходные данные» предназначена для задания геометрии каркаса. Можно изменять параметры в следующих полях:

«Многогранник » — многогранник на основание которого строится вся конструкция. Возможны два варианта: икосаэдр и октаэдр.

«Частота, V » — количество разбиений вершин. При увеличении частоты, увеличивается количество вершин и ребер соответственно. Чем больше это значение, тем больше форма каркаса приближается к сфере и тем меньше длина рёбер.


Икосаэдр — многогранник, у которого значение частоты разбиения V равно 1.
Октаэдр — многогранник, у которого значение частоты разбиения V равно 1.

Значение частоты разбиения равное единице соответствует конструкции в виде икосаэдра или октаэдра в зависимости от того какой многогранник задан в графе «многогранник». При увеличении частоты происходит разбиение рёбер многогранника на части. Количество рёбер, составляющих разбитое ребро, равно частоте разбиения.


Частота разбиения икосаэдра.

«Класс разбиения » — этот пункт отвечает за выбор способа разбиения, а следовательно и формы конечной конструкции.

При частоте разбиения равной двум и более возможны различные варианты каждого разбиения. Эти варианты делятся на классы. Если спроецировать разбиение на грань икосаэдра, то все возможные классы разбиения икосаэдра можно представить в виде схемы.


Классы разбиения купольных конструкций.

В калькуляторе римскими цифрами обозначены основные классы, всего их три. Арабскими цифрами обозначены вариации основных классов.

Аналогично способы разбиения задаются для октаэдра.

«Метод разбиения » — позволяет сделать выбор между «Равные хорды», «Равные дуги» и «Мексиканец».

«Осевая симметрия » — выбор оси симметрии, которая учитывается при отсечении части купола от сферы и выстраивании купола по вертикали. Возможные варианты:

  • Pentad — ось симметрии проходит через вершину, в которой сходится 5 рёбер.
  • Cross — ось симметрии проходит через вершину, в которой сходится 6 рёбер.
  • Triad — ось симметрии проходит через грань.

«Фулерен » — выбор формы купола в виде фулерена, который вписывается («вписанный») в сферу, или описывает её («описанный»). Поле «Фулерен» не доступно при выборе варианта соединения «Joint».


«Выравнивание основания » — позволяет выравнивать основание относительно плоскости основания за счет изменения длин рёбер у основания купола. Поле «Выравнивание основания» не доступно при выборе способа соединения «Cone» или выборе формы фулерена.

Функция «выравнивание основания» изменят длину рёбер у основания купола таким образом, что вершины купола на внешней его поверхности располагаются в плоскости основания. Вершины купола на внутренней поверхности купола в общем случае не располагаются в плоскости основания, а строятся по общему принципу — к центру купола от его внешней поверхности.

При включении «выравнивания основания» рёбра своей широкой стороной лежат в плоскости горизонта в случае, когда в поле «часть сферы» выбрано 1/2. В остальных случаях, они не лежат в плоскости горизонта.

«Часть сферы » — выбор части сферы, из которой будет состоять купол. Для куполов разной частоты возможны различные пропорции отсечения.

Размеры и способ соединения

Поле «размеры и способы соединения» позволяет задать размеры сферы и выбрать способ соединения ребер купола. Параметры поля:

«Радиус сферы, м » — задается радиус сферы в метрах.

В выпадающем списке можно выбрать следующие варианты соединений:

  • «Piped» — способ соединения с использованием коннекторов. При выборе данного способа соединений появляется дополнительное поле, в котором можно задать диаметр трубы, составляющей коннектор.
  • «GoodKarma» — безконнекторный способ соединения, при котором каждое ребро составляют два бруса. При выборе данного способа соединения появляется дополнительное поле, в котором можно задать способ соединения рёбер по часовой стрелке или против часовой стрелки.
  • «Semikone» — безконнекторный способ соединения, при котором каждое ребро составляют два бруса.
  • «Cone» — безконнекторный способ соединения, при котором каждое ребро состоит из одного бруса.
  • «Joint» — безконнекторный способ соединения, при котором каждое ребро состоит из одного бруса. При выборе данного способа соединения появляется дополнительное поле, в котором можно задать способ соединения рёбер по часовой стрелке или против часовой стрелки. Способ «Joint» не доступен для купола в форме фулерена.
  • «Nose» — безконнекторный способ соединения, при котором каждое ребро состоит из одного бруса. Возможность выбора данного способа соединения предусмотрена только для купола в форме фулерена. Чтобы данный способ соединения появился в списке вариантов соединения, нужно предварительно задать форму купола в виде фулерена в поле «Фулерен» в разделе «Исходные данные». Для этого в поле «Фулерен» нужно выбрать один из вариантов: «Вписанный» или «Описанный». При выборе данного способа соединения появляется дополнительное поле, в котором можно задать способ соединения рёбер по часовой стрелке или против часовой стрелки.

Для всех способов соединения рёбра у основания купола состоят из одного бруса.

Для многогранников в виде октаэдра в текущей версии калькулятора не реализован расчет соединения «Cone». Вместо него калькулятор рассчитывает значения, как для типа соединения «Piped» с нулевым диаметром трубы.

Размеры рёбер

В этом поле задаются ширина и толщина рёбер в миллиметрах.

Схема купола

В правой части калькулятора отображается схема заданного купола. Купол можно вращать мышкой и приближать и отдалять его колесом мыши.

В калькуляторе можно посмотреть: каркас, кровлю, схему и план, нажав соответствующую кнопку. Их также можно вращать, увеличивать и уменьшать.

Схема


Кровля


Схема на вкладке «Кровля» позволяет исключать из расчёта отдельные грани и рёбра конструкции. Для исключения грани, нужно щёлкнуть по ней мышкой. Для исключения ребра нужно исключить примыкающие к нему с обеих сторон грани.

При исключении из расчёта граней и рёбер во вкладке «Кровля» значения в других вкладах и разделах калькулятора пересчитываются автоматически.

Данная функция может быть полезна для анализа возможных проёмов в конструкции, например для дверей и окон. А также для расчёта таких конструкций как беседки, навесы, козырьки и другие.

План


Во вкладке «План» можно увидеть проекцию нижних рёбер конструкции на плоскость в основании. А также размеры от центра сферы до концов проекций и высоту концов рёбер.

Выделив мышкой отдельные рёбра, можно увидеть аналогичную информацию для любого ребра купола.

Повторный щелчок мыши снимает выделение.

Если во вкладке «Кровля» исключена грань купола, то при переходе на вкладку «План» автоматически подсветятся рёбра этих граней.

Чтобы увидеть план основания полностью, вращайте схему курсором.

Результаты измерений

Содержимое блока «результаты измерений» становится видимым при щелчке по заголовку этого блока «результаты измерений».

Название каждого поля отвечает само за себя.

В блоке «Размеры» указано количество размеров и количество самих элементов:

«Граней» — первое число указывает количество размеров, второе число показывает количество граней. На схеме грани одного размера показаны одним цветом.

«Ребер» — первое число указывает количество размеров, второе число показывает количество рёбер. На схеме рёбра одного размера показаны одним цветом и обозначены одинаковыми буквами.

«Вершин» — первое число указывает количество вершин к которым подводятся разные рёбра без учета того, что к вершинам у снования подводится меньше рёбер. Второе число показывает количество вершин.

Рёбра

В блоке рёбра показаны вид, размеры и количество всех рёбер рассчитанного купола.

На схеме используются следующие обозначения:


  1. Индекс ребра и его цвет на схеме. В качестве индекса используются латинские буквы.
  2. Количество рёбер данного типа (индекса).
  3. Значение двугранного угла между плоскостью ребра и прилегающей к нему гранью купола.
  4. Числовое обозначение вершины, в которую ребро упирается данным концом.
  5. Значение двугранного угла между внешней плоскостью ребра и плоскостью отреза.

Если правая сторона рёбер выводится не корректно, то увеличьте ширину окна браузера, в котором открыт калькулятор. Рекомендуемая ширина 1920 пикселей.

При распиле рёбер торцовочной пилой иногда удобно ориентировать ребро широкой стороной вниз. Тогда углы поворота пилы будут отличаться от полученных здесь. Для их пересчёта можно воспользоваться отдельным .

Грани

В блоке грани показаны вид, размеры и количество всех граней рассчитанного купола.

Вершины

В блоке вершины показаны вид, размеры и количество всех вершины рассчитанного купола. Вершины приведены без учета отсечения части сферы от купола. Так если одно или несколько рёбер имеет обозначение «undefined», то это значит что в усеченном куполе такие вершины есть у основания и граней с обозначением «undefined» у них нет. Для того чтобы увидеть все грани, в поле «часть сферы» следует выбрать всю сферу «1/1».

Результаты конструирования

Скачать модель получившейся конструкции в формате.obj можно с помощью кнопки «выгрузить». Она расположена после результатов вычислений в нижней части страницы в блоке полезных ссылок.

Разновидностью постройки, возводимой по каркасно-щитовой технологии, является геодезический купол – объект невероятно практичный, способный выполнять не одну функцию. Подобная конструкция может быть положена в основу загородного дома, теплицы, беседки или игровой зоны для детворы.

  • Подобная форма обладает большой несущей способностью. Вес распределяется идеально равномерно – это позволяет выдерживать солидные нагрузки и экономить на фундаменте.
  • Замечательные аэродинамические свойства. «Обтекаемая» форма геокупола повышает сопротивляемость даже самым мощным потокам воздуха – в виде разрушительных смерчей и ураганов.
  • Не вызывающая сомнений устойчивость сферического каркаса к толчкам и сотрясениям позволяет рекомендовать такой вид строительства для наиболее сейсмоопасных районов.
  • Экономичность названного способа создания многофункциональных домов-укрытий-оранжерей-спортплощадок бесспорна: площадь поверхности боковых частей предельно минимизирована.
  • Геокупольное строение – оптимальный вариант для организации совершенной системы поддержания микромиклимата: полусферические стены облегчают циркуляцию воздушной струи.
  • Редкостной красоты куполоподобный объект легко вписывается в оформляемую по любым дизайнерским критериям территорию и «поднимается» быстро даже строителями-непрофессионалами.

О недостатках

  • Пологость стенок осложняет выстраивание полок, стеллажей в геокупольной теплице. В ситуации же с куполообразной крышей жилища затрудняется членение жилого пространства.
  • В ходе строительных работ возникает обилие стыков, которые следует герметизировать и утеплять по отдельности. Это сложный процесс, требующий определенных навыков и терпения.
  • Расчеты при проектировании представляют собой непростую задачу – как и стремление к ювелирной точности и красоты брусков и треугольников, используемых при «выкладке» покрытия.

Подготовка к строительству и расчет геокупола

Если это конструкция теплично-оранжерейного типа, подыскивается участок, залитый солнечным светом. Планируете соорудить беседку или крытую спортплощадку – выбирайте теневую сторону территории. Мечтаете об оригинальном, необычном домике-шапке – вполне уместным окажется полузатененный вариант с вплотную прилегающим садом.

Стройплощадку надо освободить от холмов, неровностей, остатков пней и корней. В случае с крупным куполом может понадобиться прочная база – тогда разметка ленточного фундамента станет одним из предварительных этапов стройки. Очертив границы круга, вы выкопаете траншею и установите опалубку. Допустимо начало строительства и без бетонирования основания – при наличии нужного количества металлических свай. Заметим: слабый грунт – неудачная предпосылка для подобной идеи.

Рассчитывая использовать возводимый «зонтик» под прозрачный парник-теплицу, вы, скорее всего, поступите иначе. Первой фазой станет удаление почвы на круговой площадке внутри сооружения. Почвенную массу имеет смысл куда-то отодвинуть – чтобы впоследствии задействовать ее для высадки растений в плодородную среду. Круг-основа выстилается нетканым материалом (например, агроволокном) – такая мера не позволит прорасти сорнякам. Настил засыпается толстым слоем гравия.

Геометрия: общие и частные моменты

Еще одна серия действий связана с точным расчетом размеров как самого купола, так и каждого из составляющих его фрагментов. Наиболее часто встречается соотношение 1:2, то есть высота строения-купольника в два раза меньше диаметра его основы. Получается правильная полусфера. Площадь низа высчитывается по известной всем формуле: S = π * r 2 , где под r подразумевают радиус круга, а стабильная величина π – 3,14. Площадь собственно купола сотавит 2 π * r 2 .

Заметим: в действительности выгнутая часть окажется чуть меньше, поскольку в каркасе присутствуют и соединительные балки-рейки. Что касается установления длины граней треугольников, из которых будет компоноваться полусферическая «мозаика», лучше всего обратиться к специализирующимся на столь сложных подсчетах интернет-сайтам. Они помогут высчитать как площадь купола-полусферы, так и купольной конструкции, вытянутой ввысь на ¾ сферы (встречаются и такие: они невероятно красивы).

Здесь мы приведем результат готовых вычислений. Определенно в полную комплектацию «кровельных» деталей купола с общим диаметром в 4 м войдут 35 крупных треугольных плиток-пластин с ребром А (длина стороны 1.23 м) и 30 треугольников помельче – с ребром Б (длиной в 1, 09 м). Помните: количество плоскостей-треугольников увеличивается по мере «прибавления в росте» куполообразной «крыши». Если ваш дом-беседка будет выглядеть как срезанный на четверть шар, треугольных щитков уйдет более 90 штук. Размер же основания заметно уменьшится.

Необходимые элементы и этапы строительства

Поскольку чаще всего строение-полушар создают в «сельскохозяйственных» целях, целесообразно рассмотреть этапы воплощения в действительность идеи с оранжерейно-тепличным уклоном. Строим купол как помещение для ранних овощей-фруктов, цветов и прочих декоративных культур. Такая целеустановка отразится на выборе инструментов и стройматериалов. Круг их обширен, а вариантов исполнения допускается несколько – в зависимости от того, что уже есть в наличии и что можно приобрести сверх этого запаса.

Каркас теплицы-оранжереи может быть деревянным

Основные материалы и инструменты:


Порядок сборки и технологические нюансы

  • О типах покрытия

Освещая особенности «обшивочной» стройгруппы, укажем: каждый из видов покрытия хорош по-своему, но не без негативных качеств. Поликарбонат не идеально прозрачен, в жару перегревается, зато демонстрирует отменные теплосберегающие свойства и удобен для монтажа. Пленка также не отличается суперпрозрачностью, но еще более облегчает монтажный процесс. Стекло не преграждает пути солнечным лучам, очень прочно. Тем не менее тяжеловато, да и стоит недешево. Оптимальный вариант – двойной стеклопакет. Безусловно дорогой.

  • Рекомендации по монтажу

Тепличный «домик» монтируется на установленную заранее основу-пол – снизу вверх, «кольцами». Перегородки скрепляются специальными креплениями – коннекторами. Прикручивать их можно как с внешней, так и с внутренней стороны. С точки зрения технических навыков процесс несложен, но требует аккуратности. Чем плотнее прилегают секции друг к дружке, чем меньше зазоры в местах соединений, тем легче будет обеспечить в дальнейшем целостность оболочки. С северной стороны эту «сеть» дополняют изнутри светоотражающей блестящей полосой.

Использование металлических стержней-трубок допустимо при сооружении геокупола

На предпоследней стадии работы, когда скелет уже обтянут «кожей», придется уделить время герметизации и утеплению. Система вентиляции (для знойного летнего периода – принудительная) также должна быть продумана заблаговременно. Несколько подвижных секций послужат форточками. Допустимо к вентилированию привлечь и дверное устройство – иногда его делают трансформирующимся. Поскольку низ тепличной «одежки» не задействован в освещении, здесь можно «нарастить» теплоизолирующий бортик, использовав ряд кирпичей, насыпь из щепок, опилок.

  • Интерьерно-садовые проблемы

Дизайн и обустройство тепличного хозяйства целиком подчинены стремлению оптимизировать условия жизни растений и придать помещению уютный, приятный для глаза вид. Выиграет тот, кто грамотно расположит стеллажи с зеленью и не забудет о потребностях главных «обитателей» сада-огорода. Место для грядок разумно будет выделить с южной стороны: там тепла и света побольше. Вентилятор желательно «запитать» от солнечной батареи, закрепляемой над «потолочной» частью купола. Ограждения грядочек неплохо бы снабдить скамеечками – «для релаксации».

Модель теплицы будущего: внутри виден разумный план обустройства посадочных рядов

Купольный парник на даче: видны вентилирующие грани-форточки

Осталось посадить рассаду-кустики-цветочки – и начать получать удовольствие от созерцания всесезонного буйства зелени. Надеемся, мечта о домашнем тропическом парке под сказочным куполом состоялась, и теперь впереди у вас – годы и годы позитива, который дарит нам единение с прекрасной природой…

Сферические, купольные жилища известны давно — яранги, чумы, вигвамы и т.д. — построены по этому принципу. Отличаются они высокой устойчивостью и простотой возведения, чем и заслужили популярность наших предков. Но купольные дома в чистом виде, как явление современного строительства, появились не так давно — примерно во второй половине прошлого века. Когда американский ученый Фуллер разложил купольную конструкцию на простые фигуры — треугольники, из которых часто и собирается вся конструкция. Именно по этому принципу строятся многие сферические дома и сегодня.

Купольные дома: технологии и их особенности

Купольный или сферический дом — это названия одной строительной технологии. Собственно, название отражает особенность домостроения такого типа — дом не прямоугольный, а выполнен в виде полусферы. Вернее — в виде многогранника, приближающегося по внешнему виду к сфере.

Такая форма лучше выдерживает ветровые и снеговые нагрузки, при равном пятне застройки с прямоугольным, имеет больше полезной площади. Но в таком доме вряд ли найдется хотя-бы одна прямоугольная или квадратная комната. Хоть одна сторона, но будет неровной. Это усложняет планировку, отделку, выбор и установку мебели. Скорее всего, всю или большую часть обстановки, придется делать «под заказ», по собственным размерам и эскизам.

Строятся купольные дома, в основном, по каркасной технологии, так что сооружение получается легким. Каркас собирается из бруса или металлических труб, обшивается листовым строительным материалом (фанера, ОСП). Между стойками каркаса укладывается утеплитель (пенополистирол, минеральная вата, пеностекло, экологические материалы типа джута, высушенных водорослей и т.п.). То есть, кроме необычной формы, никаких новостей, материалы подбираются как для обычного каркасного дома.

Стоят купольные дома и из монолитного железобетона. Но эта технология используется нечасто, особенно в нашей стране, где пиломатериалы, порой, обходятся дешевле. Если учесть еще и необходимость хорошей теплоизоляции бетонного купола, становится понятным его непопулярность.

С каркасами купольных домов не все так просто. Существует две технологии, по которым их собирают: геодезический и стратодезический купол. Они имеют свои особенности, способные оказать влияние на ваш выбор.

Геодезический купол

Купол разделен на треугольники, из которых и собирается многогранник. Особенность этой технологии — в одной точке сходится большое количество балок. Для обеспечения их надежной фиксации используются коннекторы — специальные устройства из стали, позволяющие надежно соединять элементы несущей конструкции. Каждый из коннекторов стоит от 600 до 1500 рублей (10-25$).

Геодезический купол для сферического дома строят на основе треугольников

При том, что количество коннекторов исчисляется десятками или даже сотнями, их наличие сильно влияет на стоимость строительства. Те, кто планируют строить купольный дом своими руками, стараются обойтись без коннекторов или сделать их тоже самостоятельно. Причины понятны, но при недостаточной прочности соединения, здание при нагрузках может разрушится. Так что с экономией на этом узле надо быть очень и очень аккуратными.

Кстати, при использовании деревянных балок есть бесконнекторная технология, но сборка таких узлов требует высокого уровня плотницкого мастерства и точного исполнения. И еще: они не настолько надежны, как соединения с металлическими коннекторами.

Достоинство каркаса этого типа — устойчивая конструкция. При разрушении 35% элементов купол не разрушается. Это проверено в сейсмоактивных регионах, при ураганах. Такая устойчивость позволяет с легкостью убирать некоторое количество перемычек. То есть проем под двери, окна можно делать в любом месте, практически любого размера. Единственное, что требуется учесть — окна будут треугольные. В этой конструкции от этого никуда не деться. Для многих это критический недостаток.

Еще одна особенность — при сборке каркаса, без обшивки он имеет хорошую устойчивость к нагрузкам на скручивание, но не очень хорошо воспринимает горизонтальные нагрузки. Потому каркас сначала собирают полностью и лишь потом его обшивают.

Стратодезический купол

Купольные дома такой конструкции собираются из секций трапециедальной формы. То есть его фрагменты больше похожи на прямоугольники или квадраты. Такое строение позволяет использовать двери и окна стандартной конструкции. Для многих это — большой плюс.

Минус статодезиеского купола в том, что убирать элементы конструкции можно только после тщательного расчета и усиления прилегающих конструкций. Так что перенос двери или окна, изменение размеров возможны только после того, как будет просчитано изменение несущей способности этого участка или даже купола в целом.

Есть у этой технологии и своя особенность сборки. Каркас должен обшиваться по мере установки стоек. То есть, второй ряд стоек собирается только после того, как обшит первый, третий ряд — после того, как второй зашит листовым материалом и т.д. Это связано с тем, что в неоконченном виде — без обшивки — каркас имеет высокую несущую способность по вертикальным нагрузкам и не очень устойчив к нагрузкам на скручивание. Как только грани обшиваются, он становится очень устойчивым и надежным.

В отличие от геодезического купола, для сборки стратодезического коннектора не требуются. Вертикальные детали каркаса соединяются при помощи замков специальной формы. Горизонтальные перемычки крепятся при помощи пластины, которая фиксируется болтами, под которые укладывается металлическая накладка.

Есть еще один нюанс, который влияет на стоимость купольного дома. При раскрое листового материала для стратодезического купола остается больше обрезков, чем при устройстве геодезического. Это в некоторой степени увеличивает затраты на материалы. Но они компенсируются тем, что окна и двери используются стандартной конструкции, в они стоят дешевле, чем треугольные. В результате стоимость купола разных технологий мало чем отличается.

Преимущества и недостатки

С тем, что купольные дома выглядит необычно, спорить никто не будет. Если вы хотите иметь дом или дачу «не как у всех» и не имеете ничего против каркасного домостроения, присмотритесь к этой технологии. Решение действительно нестандартное. К тому же, говорят, экономичное. Стоимость квадратного метра начинается от 200$. Но как понимаете, это минимальная цена. Такой себе эконом вариант.

Плюсы купольных домов

Кроме необычного внешнего вида плюсы у сферических домов следующие:


По совокупности характеристик купольные дома выглядят очень привлекательны. К тому же многие говорят о том, что на постройку требуется намного меньше средств — за счет меньшей поверхности стен, идет экономия материала. По математическим выкладкам площадь стен меньше почти на треть. Но экономия если и будет, то не такой большой — стройка специфическая, с использованием специфических компонентов, которые удорожают строительство. По факту стоимость квадратного метра получается примерно такой же как при обычной формы.

Минусы

Недостатки тоже есть и они тоже довольно серьезные. Во всяком случае, стоит о них знать и принимать во внимание.


Есть еще необычная планировка, но однозначно ее отнести к недостаткам не получится. Нравятся купольные дома именно своей неординарностью. Так что нестандартная форма помещений — это, скорее, особенность, которую надо учитывать при подборе/заказе мебели и выборе отделочных материалов.

Проекты и особенности планировки

Круглое здание далеко нелегко распланировать так, чтобы было рационально, красиво, да еще и удобно. Есть несколько основных приемов, которых придерживаются большинство. Первое, что бросается в глаза, в таком доме просто не может быть коридоров. Им просто некуда вести. Это неплохо, но планировка дома становится от этого сложнее. Начнем с простого — как оформить вход в дом.

Входная группа

Для нашего климата желательно чтобы входные двери выходили в небольшое помещение, а не в большую комнату. Спасает в этом случае небольшой тамбур. О может быть выделенным из общей площади или пристроенным. Примерно те же задачи выполняет крытая веранда. Это более «цивильный» способ решить проблему.

Не всем подобный подход нравится. Сегодня в мире другие тенденции — из входной двери попадают в большой просторный холл/гостиную. Такая планировка тоже возможна, но необходимы дополнительные меры по отсечению холодного воздуха — тепловая завеса возле входа. Ее делают при помощи встраиваемых в пол конвекторов или установив возле двери несколько мощных радиаторов. Первый способ эффективнее, второй проще в исполнении. Все эти нюансы характерны и для купольных домов. С той лишь разницей, что придется поломать голову, как вписать встроенный тамбур. Два остальных способа решаются проще.

Давайте рассмотрим варианты устройства входной группы на примерах. На картинке вверху, правый проект, входные двери выходят в гостиную/столовую. Такое решение характерно для Европы и Америки. У нас постепенно приобретает популярность, но в связи с более суровым климатом часто приносит неудобства — каждое открывание дверей в зимний период приносит значительную порцию холодного воздуха, что снижает комфорт.

Вариант слева — с пристроенным тамбуром. Из тамбура два выхода — один в зимний сад, другой — в кухню/столовую. Решение не менее современное, но решена проблема поступления холодного воздуха в жилые помещения. Так что подобную идею стоит взять на вооружение.

Если тамбур решено делать встроенным, очевидно, придется выделить какую-то площадь дома. Минимально — это три квадрата (на левом проекте). Логично, если дальше будет располагаться гостиная/столовая.

Еще дин способ — выделить большую площадь и использовать ее как прихожую. Разместить тут гардероб, вешалку для вещей «на сейчас» (проект права). Если позволит площадь, можно будет установить небольшой диванчик. Для частого дома наличие прихожей — практически необходимость. Грязь и песок меньше таскаются в дом. И это — еще один довод в пользу выделенной входной группы. Пристроенной или отгороженной — это уже ваш выбор. Но помещение для входа — это удобно. Во всяком случае, в наших реалиях.

Организация пространства

Чаще всего центральная часть пространства купольного дома выделяется под помещение общего пользования. Из этой центральной зоны можно попасть во все другие комнаты, которые расположены по кругу. Вообще, центральное помещение получается неудобным, так как оно «очень проходное».

В нем не удастся расслабиться, если это гостиная, в нем не очень удобно готовить, если придет идея использовать это помещение как кухню, как столовая оно тоже не самый лучший вариант. Проекты, которые именно так используют это пространство, представлены выше. На картинке выглядит замечательно, а вот в жизни рассчитывать на камерную обстановку тут не получится. Так что проходные комнаты — не самые обитаемые.

Не самый плохой способ использования этой проходной зоны — установка лестницы. Ведь большая часть купольных домов имеет два этажа, а сюда просто просится винтовая . Только надо учесть, что если ее просто закручивать вокруг столба, пользоваться будет неудобно — слишком крутые повороты получаются. Если же конструировать лестницу по типу «колодца», ее трудно построить самостоятельно. Так что эту часть придется кому-то передоверить.

В остальном купольные дома планируются также, как и обычные. Основное правило, которое надо запомнить: чтобы инженерные системы были не очень дорогими, все «мокрые» помещения размещаются недалеко друг от друга. Расположение спален, кабинетов и других «сухих» помещений — на ваш вкус.

Видео по теме

Как бы подробно не описывали технологию, ее плюсы и минусы, точное представление получить так сложно. Значительную часть информации и впечатлений мы получаем визуально. Картинки и фото помогают лишь частично дать общее представление. Намного лучше все увидеть своими глазами в видео отзывах.

Методика расчета купола зависит от его типа и вида нагрузки -- осесимметричной и неосесимметричной. К первой относится собственный вес конструкции, сплошной снеговой покров и симметрично подвешенное оборудование. Ко второй -- ветровая нагрузка, односторонняя снеговая нагрузка и несимметрично расположенное оборудование. При отношении f/D ? 1/4 ветровой напор создает на поверхности купола отсос, который разгружает купол и может не учитываться. Однако легкие, например, пластмассовые купола необходимо проверять расчетом на действие отсоса ветра.

На стадии определения конструктивного решения тонкостенного купола применяют приближенные способы расчета. Они дают вполне достоверные результаты, зачастую с точностью выше реальных допусков, практикуемых при подборе сечений элементов купола. В рабочем проектировании пользуются точными методами, ориентированными на реализацию вычислений с помощью компьютера.

Тонкостенные купола можно рассчитывать по безмоментной теории, условиями применения которой являются: плавность изменения толщины оболочки, радиуса кривизны ее меридиана, интенсивности нагрузки; свободное перемещение оболочки в радиальном и кольцевом направлениях. Безмоментное опирание купола по внешнему контуру представляется как непрерывное, шарнирно-подвижное, образуемое стерженьками-опорами, направленными по касательным к меридиональным сечениям оболочки. В этом случае оболочка будет статически определима (рис, 9.3), При нарушении названных условий напряженное состояние купола должно определяться с учетом действия изгибающих моментов в краевых зонах.

В безмоментном напряженном состоянии оболочка купола работает как тонкая мембрана и поэтому подвержена только нормальным усилиям, действующим в ее срединной поверхности. На практике это положение можно принять в отношении всего купола кроме приопорной зоны, где появляются изгибающие моменты.

Рассмотрим купол произвольного очертания, двоякая кривизна которого в каждой точке определяется двумя радиусами кривизны R1 и R2. В общем случае элемент оболочки купола, ограниченный двумя меридиональными и двумя кольцевыми сечениями, находится под воздействием нормальных усилий -- меридионального N1 и кольцевого N2, а также касательного усилия S, отнесенных к единице длины сечения (см. рис. 9.3 а). При загружении купола осесимметричной нагрузкой (собственный вес, снег на всей поверхности) усилие S = 0, а усилия N1 и N2 определяют из условий статики как функции только угловой координаты ц (широты).

Напряженное состояние купола при осесимметричной нагрузке характеризуется следующим уравнением равновесия:

где qц -- нормальная к поверхности купола составляющая внешней нагрузки q (на 1 м2 поверхности купола).

Для определения меридионального усилия N1 кольцевым горизонтальным сечением отсекается верхняя часть купола и рассматривается ее равновесие (см. рис. 9.3 в). На отсеченный сегмент действует сжимающая сила Qц, которая представляет собой сумму всех нагрузок, приложенных выше рассматриваемого сечения. Исходя из условия УZ=0, она должна уравновешиваться меридиональными усилиями N1 по периметру кольцевого сечения радиуса r:

где (ц--текущая угловая координата (отсчитывается от оси вращения); r = R2sinц.

Следовательно,

Кольцевое усилие N2 находят из уравнения (9.2):

Распор купола определяется как горизонтальная проекция меридионального усилияN1

Распор в уровне опорного кольца (ц = ц0):

где N1,0 -- меридиональное усилие в уровне опорного кольца; ц0 -- половина центрального угла дуги оболочки в меридиональном направлении; r0 -- радиус опорного кольца; Qц,0-- нагрузка, действующая на купол.

Распор Fh действует на опорное кольцо в радиальном направлении, поэтому растягивающее усилие в опорном кольце:

Сжимающее усилие в верхнем кольце от нагрузки q при соответствующей текущей координате ц определяется аналогично (9.8).

Под действием вертикальной нагрузки купол сжат, а вблизи опорного кольца растянут. Существует нейтральное кольцевое сечение («параллель»), вдоль которой усилия N2 равны нулю. Координата этой параллели определяется формой купола и видом нагрузки. Ее можно вычислить, приравняв к нулю выражение в скобках в формуле (9.5).

Дальнейшее рассмотрение оболочки вращения под действием конкретных нагрузок проведем на примере сферического купола. Геометрически он наиболее прост, а основные выводы качественного порядка, сделанные для сферы, могут быть распространены на купола других форм.

Для сферы R1 = R2 = R формулы (9.4) и (9.5) приобретают вид:

Формулы расчета сферических куполов на действие нагрузок от собственного веса g(кН/м2 поверхности купола) и снега s (кН/м2 перекрываемой куполом площади) приведены в , , . Распределение меридиональных и кольцевых усилий в полусферическом куполе от вертикальных нагрузок показано на рис. 9.4.

Угол ц, при котором кольцевые усилия в куполе меняют знак, превращаясь из сжимающих в растягивающие, равен ~ 52° при действии собственного веса и 45° -- при полной снеговой нагрузке. Для того, чтобы избежать растягивающих кольцевых усилий, стрела подъема купола f не должна превышать 1/52). Более подъемистые купола нуждаются в специальных кольцевых затяжках в нижних приконтурных зонах. Аналогичные вычисления усилий и критических величин углов могут быть выполнены для куполов вращения других очертаний.


При действии горизонтальных сил (ветер, сейсмика) и несимметричных нагрузок (одностороннее расположение снега) напряженное состояние купола характеризуется, кроме нормальных усилий N1 и N2, также касательными (сдвигающими) усилиями S. Расчет существенно усложняется и его выполняют по специальной методике.

Усилия N1 и N2 в гладкой оболочке купола, как правило, невелики, поэтому ее толщина определяется, главным образом, конструктивными или технологическими соображениями.

Особое внимание уделяют устойчивости купола. Формулы ее проверки, характерные для каждого материала, даются при рассмотрении особенностей куполов из различных материалов.

Волнистые и складчатые купола составляют особую группу. С архитектурной точки зрения они весьма эффектны, обладают богатой пластикой и немалыми конструктивными достоинствами, связанными с жесткостью формы. Будучи сплошностенчатыми (гладкими) или решетчатыми, они могут быть отнесены, соответственно, к тонкостенным или ребристым куполам. В железобетоне выполняют волнистые и складчатые купола, а из клееной древесины -- чаще складчатые.